WELCOME

Set Theory

J. Maria Joseph Ph.D.,

Assistant Professor, Department of Mathematics, St. Joseph's College, Trichy - 2.

$$
\text { July 1, } 2015
$$

Outline

(1) Set Theory

- Introduction to Sets
- Sets
(2) Origin of Set Theory
(3) Definitions

4 Problems

Set Theory

This is where mathematics starts.

Introduction to Sets

What is set ?
 Well, simply put, it's a collection.

Introduction to Sets

What is set?

Well, simply put, it's a collection.

Definition

A set is a collection of well defined objects or things.

Introduction to Sets

What is set?

Well, simply put, it's a collection.

Definition
 A set is a collection of well defined objects or things.

First we specify a common property among "things"

Introduction to Sets

What is set ?

Well, simply put, it's a collection.

Definition

A set is a collection of well defined objects or things.

First we specify a common property among "things" and then we gather up all the "things" that have this common property.

Introduction to Sets

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on.

Introduction to Sets

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.

Introduction to Sets

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred. This is known as a set.

Introduction to Sets

For Example

The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.
 This is known as a set.

Introduction to Sets

For Example
Types of fingers.

Introduction to Sets

For Example

Types of fingers. This set includes index, middle, ring, and pinky.

Introduction to Sets

For Example

Types of fingers. This set includes index, middle, ring, and pinky.

Introduction to Sets

For Example

Types of fingers. This set includes index, middle, ring, and pinky.

So it is just things grouped together with a certain property in common.

Introduction to Sets

Notation

There is a fairly simple notation for sets.

Introduction to Sets

Notation

There is a fairly simple notation for sets. We simply list each element, separated by a comma, and then put some curly brackets around the whole thing.

Introduction to Sets

Notation

There is a fairly simple notation for sets. We simply list each element, separated by a comma, and then put some curly brackets around the whole thing.

$$
\{3,6,91, \ldots\}
$$

Introduction to Sets

Notation

There is a fairly simple notation for sets. We simply list each element, separated by a comma, and then put some curly brackets around the whole thing.

$$
\{3,6,91, \ldots\}
$$

The curly brackets $\{\quad\}$ are sometimes called "set brackets" or "braces".

Introduction to Sets

Notation for Examples

\{ socks, shoes, watches, shirts, ... \} - For Example 1

Introduction to Sets

Notation for Examples

\{ socks, shoes, watches, shirts, ...\} - For Example 1
\{ index, middle, ring, pinky \} - For Example 2

Introduction to Sets

Notation for Examples

\{ socks, shoes, watches, shirts, ... \} - For Example 1
\{ index, middle, ring, pinky \} - For Example 2

Notice how the first example has the "...".

Introduction to Sets

Notation for Examples

\{ socks, shoes, watches, shirts, ... \} - For Example 1
\{ index, middle, ring, pinky \} - For Example 2
Notice how the first example has the "...". The three dots \cdots are called an ellipsis, and mean "continue on".

Introduction to Sets

Notation for Examples

\{ socks, shoes, watches, shirts, ... \} - For Example 1
\{ index, middle, ring, pinky \} - For Example 2

Notice how the first example has the "...". The three dots \cdots are called an ellipsis, and mean "continue on".

The first set $\{$ socks, shoes, watches, shirts, ...\} we call an infinite set,

Introduction to Sets

Notation for Examples

\{ socks, shoes, watches, shirts, ... \} - For Example 1
\{ index, middle, ring, pinky \} - For Example 2
Notice how the first example has the "...". The three dots \cdots are called an ellipsis, and mean "continue on".

The first set $\{$ socks, shoes, watches, shirts, ...\} we call an infinite set, the second set $\{$ index, middle, ring, pinky $\}$ we call a finite set.

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ?

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set,

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set, all we have to specify is a common characteristic.

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set, all we have to specify is a common characteristic. Who says we can't do so with numbers ?

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set, all we have to specify is a common characteristic. Who says we can't do so with numbers ?

For Example

Set of even numbers: $\{\ldots,-4,-2,0,2,4, \ldots\}$

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set, all we have to specify is a common characteristic. Who says we can't do so with numbers ?

For Example

Set of even numbers: $\{\ldots,-4,-2,0,2,4, \ldots\}$
Set of odd numbers: $\{\ldots,-3,-1,1,3, \ldots\}$

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set, all we have to specify is a common characteristic. Who says we can't do so with numbers ?

For Example

Set of even numbers: $\{\ldots,-4,-2,0,2,4, \ldots\}$
Set of odd numbers: $\{\ldots,-3,-1,1,3, \ldots\}$
Set of prime numbers: $\{2,3,5,7,11,13,17, \ldots\}$

Introduction to Sets

Numerical Sets

So what does this have to do with mathematics ? When we define a set, all we have to specify is a common characteristic. Who says we can't do so with numbers ?

For Example

Set of even numbers: $\{\ldots,-4,-2,0,2,4, \ldots\}$
Set of odd numbers: $\{\ldots,-3,-1,1,3, \ldots\}$
Set of prime numbers: $\{2,3,5,7,11,13,17, \ldots\}$
Tositive multiples of 3 that are less than 10 : $\{3,6,9\}$

Introduction to Sets

Universal Set
 At the start we used the word "things" in quotes.

Introduction to Sets

Universal Set

At the start we used the word "things" in quotes. We call this the universal set.

Introduction to Sets

Universal Set

At the start we used the word "things" in quotes. We call this the universal set. It's a set that contains everything.

Introduction to Sets

Universal Set

At the start we used the word "things" in quotes. We call this the universal set. It's a set that contains everything. Well, not exactly everything.

Introduction to Sets

Universal Set

At the start we used the word "things" in quotes. We call this the universal set. It's a set that contains everything. Well, not exactly everything. Everything that is relevant to our question.

Introduction to Sets

Some More Notation

When talking about sets, it is fairly standard to use

Introduction to Sets

Some More Notation

When talking about sets, it is fairly standard to use Capital Letters A, B, C, \ldots to represent the set,

Introduction to Sets

Some More Notation

When talking about sets, it is fairly standard to use Capital Letters A, B, C, \ldots to represent the set, and lower-case letters a, b, c, \ldots to represent an element in that set.

Introduction to Sets

Some More Notation

When talking about sets, it is fairly standard to use Capital Letters A, B, C, \ldots to represent the set, and lower-case letters a, b, c, \ldots to represent an element in that set.

For Example

$$
A=\{a, e, i, o, u\}
$$

Introduction to Sets

Some More Notation

When talking about sets, it is fairly standard to use Capital Letters A, B, C, \ldots to represent the set, and lower-case letters a, b, c, \ldots to represent an element in that set.

For Example

$$
A=\{a, e, i, o, u\}
$$

Here A denotes the set of vowels, and a, e, i, o, u is an element of the set A.

Introduction to Sets

Some More Notation

When we say an element a is in a set A,

Introduction to Sets

Some More Notation

When we say an element a is in a set A, we use the symbol \in to show it.

Introduction to Sets

Some More Notation

When we say an element a is in a set A, we use the symbol \in to show it. And if something is not in a set use \notin.

Introduction to Sets

Some More Notation

When we say an element a is in a set A, we use the symbol \in to show it. And if something is not in a set use \notin.

For Example
Set A is $\{1,2,3\}$.

Introduction to Sets

Some More Notation

When we say an element a is in a set A, we use the symbol \in to show it. And if something is not in a set use \notin.

For Example

Set A is $\{1,2,3\}$. We can see that $1 \in A$,

Introduction to Sets

Some More Notation

When we say an element a is in a set A, we use the symbol \in to show it. And if something is not in a set use \notin.

For Example

Set A is $\{1,2,3\}$. We can see that $1 \in A$, but $5 \notin A$.

Introduction to Sets

Equality

Two sets are equal if they have precisely the same members.

Introduction to Sets

Equality

Two sets are equal if they have precisely the same members. Now, at first glance they may not seen equal,

Introduction to Sets

Equality

Two sets are equal if they have precisely the same members. Now, at first glance they may not seen equal, so we may have to examine them closely!

Introduction to Sets

For Example

Are A and B equal where:

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
嘫 $B=\{4,2,1,3\}$

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
궁 $B=\{4,2,1,3\}$

Let's check.

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
궁 $B=\{4,2,1,3\}$

Let's check. They both contain 1 .

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
궁 $B=\{4,2,1,3\}$

Let's check. They both contain 1. They both contain 2 .

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
傕 $B=\{4,2,1,3\}$

Let's check. They both contain 1. They both contain 2. And 3, And 4.

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
咦 $B=\{4,2,1,3\}$

Let's check. They both contain 1. They both contain 2. And 3, And 4. And we have checked every element of both sets,

Introduction to Sets

For Example

Are A and B equal where:
嗯 A is the set whose members are the first four positive whole numbers
傕 $B=\{4,2,1,3\}$

Let's check. They both contain 1. They both contain 2. And 3, And 4. And we have checked every element of both sets, so: Yes, they are equal !

Introduction to Sets

For Example

Are A and B equal where:
喂 A is the set whose members are the first four positive whole numbers
咦 $B=\{4,2,1,3\}$

Let's check. They both contain 1. They both contain 2. And 3, And 4. And we have checked every element of both sets, so: Yes, they are equal !

$$
A=B
$$

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$.

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$. A subset of this is $\{1,2,3\}$.

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$. A subset of this is $\{1,2,3\}$. Another subset is $\{3,4\}$

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$. A subset of this is $\{1,2,3\}$. Another subset is $\{3,4\}$ or even another, $\{1\}$.

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$. A subset of this is $\{1,2,3\}$. Another subset is $\{3,4\}$ or even another, $\{1\}$. However, $\{1,6\}$ is not a subset,

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$. A subset of this is $\{1,2,3\}$. Another subset is $\{3,4\}$ or even another, $\{1\}$. However, $\{1,6\}$ is not a subset, since it contains an element 6 which is not in the parent set.

Introduction to Sets

Subsets

When we define a set, if we take pieces of that set, we can form what is called a subset.

For Example

We have the set $\{1,2,3,4,5\}$. A subset of this is $\{1,2,3\}$. Another subset is $\{3,4\}$ or even another, $\{1\}$. However, $\{1,6\}$ is not a subset, since it contains an element 6 which is not in the parent set.

In general

A is a subset of B if and only if every element of A is in B

Introduction to Sets

For Example

Let A be all multiples of 4 and B be all multiples of 2 . Is A a subset of B ? And is B a subset of A ?

Introduction to Sets

For Example

Let A be all multiples of 4 and B be all multiples of 2 . Is A a subset of B ? And is B a subset of A ?
Well, we can't check every element in these sets, because they have an infinite number of elements. So we need to get an idea of what the elements look like in each, and then compare them.

Introduction to Sets

For Example

Let A be all multiples of 4 and B be all multiples of 2 . Is A a subset of B ? And is B a subset of A ?
Well, we can't check every element in these sets, because they have an infinite number of elements. So we need to get an idea of what the elements look like in each, and then compare them.

The sets are

$$
A=\{\ldots,-8,-4,0,4,8, \ldots\}
$$

Introduction to Sets

For Example

Let A be all multiples of 4 and B be all multiples of 2 . Is A a subset of B ? And is B a subset of A ?
Well, we can't check every element in these sets, because they have an infinite number of elements. So we need to get an idea of what the elements look like in each, and then compare them.

The sets are

$$
\begin{aligned}
& A=\{\ldots,-8,-4,0,4,8, \ldots\} \\
& B=\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}
\end{aligned}
$$

Introduction to Sets

$$
\begin{aligned}
& A=\{\ldots,-8,-4,0,4,8, \ldots\} \\
& =\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}\}
\end{aligned}
$$

Introduction to Sets

$$
\begin{aligned}
& A=\{\ldots,-8,-4,0,4,8, \ldots\} \\
& =\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}
\end{aligned}
$$

By pairing off members of the two sets, we can see that every member of A is also a member of B,

Introduction to Sets

$$
\begin{gathered}
A=\{\ldots,-8,-4,0,4,8, \ldots\} \\
B=\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}
\end{gathered}
$$

By pairing off members of the two sets, we can see that every member of A is also a member of B, but every member of B is not a member of A.

Introduction to Sets

$$
\begin{gathered}
A=\{\ldots,-8,-4,0,4,8, \ldots\} \\
B=\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}
\end{gathered}
$$

By pairing off members of the two sets, we can see that every member of A is also a member of B, but every member of B is not a member of A.

A is a subset of B,

Introduction to Sets

$$
\begin{gathered}
A=\{\ldots,-8,-4,0,4,8, \ldots\} \\
B=\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\}
\end{gathered}
$$

By pairing off members of the two sets, we can see that every member of A is also a member of B, but every member of B is not a member of A.

A is a subset of B, but B is not a subset of A

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.)

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ?

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ? This doesn't seem very proper, does it?

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ? This doesn't seem very proper, does it? We want our subsets to be proper.

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ? This doesn't seem very proper, does it? We want our subsets to be proper. So we introduce proper subsets.

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ? This doesn't seem very proper, does it? We want our subsets to be proper. So we introduce proper subsets.

Definition

A is a proper subset of B if and only if

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ? This doesn't seem very proper, does it? We want our subsets to be proper. So we introduce proper subsets.

Definition

A is a proper subset of B if and only if every element in A is also in B,

Introduction to Sets

Proper Subsets

Let A be a set. Is every element in A an element in A ? (Yes, I wrote that correctly.) So doesn't that mean that A is a subset of A ? This doesn't seem very proper, does it? We want our subsets to be proper. So we introduce proper subsets.

Definition

A is a proper subset of B if and only if every element in A is also in B, and there exists at least one element in B that is not in A.

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$,

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.
$\{1,2,3\}$ is a proper subset of $\{1,2,3,4\}$

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.
$\{1,2,3\}$ is a proper subset of $\{1,2,3,4\}$ because the element 4 is not in the first set.

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.
$\{1,2,3\}$ is a proper subset of $\{1,2,3,4\}$ because the element 4 is not in the first set.

Notice that if A is a proper subset of B,

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.
$\{1,2,3\}$ is a proper subset of $\{1,2,3,4\}$ because the element 4 is not in the first set.

Notice that if A is a proper subset of B, then it is also a subset of B.

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.
$\{1,2,3\}$ is a proper subset of $\{1,2,3,4\}$ because the element 4 is not in the first set.

Notice that if A is a proper subset of B, then it is also a subset of B.

Even More Notation

When we say that A is a subset of B, we write $A \subseteq B$.

Introduction to Sets

For Example

$\{1,2,3\}$ is a subset of $\{1,2,3\}$, but is not a proper subset of $\{1,2,3\}$.
$\{1,2,3\}$ is a proper subset of $\{1,2,3,4\}$ because the element 4 is not in the first set.

Notice that if A is a proper subset of B, then it is also a subset of B.

Even More Notation

When we say that A is a subset of B, we write $A \subseteq B$. Or we can say that A is not a subset of B by $A \nsubseteq B$ ("A is not a subset of B ")

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar.

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar. "But wait!" you say, "There are no piano keys on a guitar!"

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar. "But wait!" you say, "There are no piano keys on a guitar!" And right you are.

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar. "But wait!" you say, "There are no piano keys on a guitar!" And right you are. It is a set with no elements.

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar. "But wait!" you say, "There are no piano keys on a guitar!" And right you are. It is a set with no elements.

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar. "But wait!" you say, "There are no piano keys on a guitar!" And right you are. It is a set with no elements.

Definition

A set which contains no element is known as the Empty Set (or Null Set).

Introduction to Sets

Empty or Null Set

As an example, think of the set of piano keys on a guitar. "But wait!" you say,
"There are no piano keys on a guitar!" And right you are. It is a set with no elements.

Definition

A set which contains no element is known as the Empty Set (or Null Set).

Notation

It is represented by \emptyset Or by $\}$ (a set with no elements)

Set

Set - Definition

A set is a collection of well defined objects.

Set

Set - Definition

A set is a collection of well defined objects.

For Example

You could have a set made up of your ten best friends

Set

Set - Definition

A set is a collection of well defined objects.

For Example

You could have a set made up of your ten best friends
Friends $=\{$ Anbu, Babu, John, Joel, Dass, David, Ravi, Raj, Selva, Vimal \}

Set

Set - Definition

A set is a collection of well defined objects.

For Example

You could have a set made up of your ten best friends
Friends $=\{$ Anbu, Babu, John, Joel, Dass, David, Ravi, Raj, Selva, Vimal \}

Anbu, Babu, Ravi and Raj play Soccer.

Set

Set - Definition

A set is a collection of well defined objects.

For Example

You could have a set made up of your ten best friends
Friends $=\{$ Anbu, Babu, John, Joel, Dass, David, Ravi, Raj, Selva, Vimal \}

Anbu, Babu, Ravi and Raj play Soccer.

Set

Set - Definition

A set is a collection of well defined objects.

For Example

You could have a set made up of your ten best friends
Friends $=\{$ Anbu, Babu, John, Joel, Dass, David, Ravi, Raj, Selva, Vimal \}

Anbu, Babu, Ravi and Raj play Soccer.

Selva, Ravi and Raj play Tennis.

Set

Set - Definition

A set is a collection of well defined objects.

For Example

You could have a set made up of your ten best friends
Friends $=\{$ Anbu, Babu, John, Joel, Dass, David, Ravi, Raj, Selva, Vimal \}

Anbu, Babu, Ravi and Raj play Soccer.

Selva, Ravi and Raj play Tennis.

Set

Union
 You can now list your friends that play Soccer OR Tennis.

Set

Union

You can now list your friends that play Soccer OR Tennis. This is called a "Union" of sets and has the special symbol \bigcup.

Set

Union

You can now list your friends that play Soccer OR Tennis. This is called a "Union" of sets and has the special symbol \cup.

Soccer \cup Tennis $=\{$ Anbu, Babu, Ravi, Raj, Selva $\}$

Set

Union

You can now list your friends that play Soccer OR Tennis. This is called a "Union" of sets and has the special symbol \bigcup.

Soccer \cup Tennis $=\{$ Anbu, Babu, Ravi, Raj, Selva $\}$
Not everyone is in that set.

Set

Union

You can now list your friends that play Soccer OR Tennis. This is called a "Union" of sets and has the special symbol \bigcup.

Soccer \cup Tennis $=\{$ Anbu, Babu, Ravi, Raj, Selva $\}$
Not everyone is in that set. Only your friends that play Soccer or Tennis (or both).

Set

Intersection

"Intersection" is when you have to be in BOTH sets.

Set

Intersection

"Intersection" is when you have to be in BOTH sets. In our case that means they play both Soccer AND Tennis.

Set

Intersection
 "Intersection" is when you have to be in BOTH sets. In our case that means they play both Soccer AND Tennis. Which is Ravi and Raj.

Set

Intersection

"Intersection" is when you have to be in BOTH sets. In our case that means they play both Soccer AND Tennis. Which is Ravi and Raj. The special symbol for Intersection is an upside down \bigcup like this \bigcap.

Set

Intersection

"Intersection" is when you have to be in BOTH sets. In our case that means they play both Soccer AND Tennis. Which is Ravi and Raj. The special symbol for Intersection is an upside down \cup like this \bigcap. And this is how we write it down

Set

Intersection

"Intersection" is when you have to be in BOTH sets. In our case that means they play both Soccer AND Tennis. Which is Ravi and Raj. The special symbol for Intersection is an upside down \bigcup like this \bigcap. And this is how we write it down

$$
\text { Soccer } \cap \text { Tennis }=\{\text { Ravi, Raj }\}
$$

Set

Difference
 You can also subtract one set from another.

Set

Difference

You can also subtract one set from another. For example, taking Soccer and subtracting Tennis means people that play Soccer but NOT Tennis.

Set

Difference

You can also subtract one set from another. For example, taking Soccer and subtracting Tennis means people that play Soccer but NOT Tennis. Which is Anbu and Babu.

Set

Difference

You can also subtract one set from another. For example, taking Soccer and subtracting Tennis means people that play Soccer but NOT Tennis. Which is Anbu and Babu. And this is how we write it down

Set

Difference

You can also subtract one set from another. For example, taking Soccer and subtracting Tennis means people that play Soccer but NOT Tennis. Which is Anbu and Babu. And this is how we write it down

$$
\text { Soccer }- \text { Tennis }=\{\text { Anbu, Babu }\}
$$

Set

Summary So Far

$\mathcal{E} \cup$ is Union: is in either set

Set

Summary So Far

$\mathscr{E} \cup$ is Union: is in either set
$\mathscr{L} \cap$ is Intersection: must be in both sets

Set

Summary So Far

$\mathscr{E} \cup$ is Union: is in either set
$\mathscr{E} \cap$ is Intersection: must be in both sets
\mathcal{E} - is Difference: in one set but not the other

Origin of Set Theory

Origin of Set Theory

GEORG CANTOR

Origin of Set Theory

(The basic ideas of set theory were developed by the German mathematician Georg Cantor (1845-1918).

Origin of Set Theory

(The basic ideas of set theory were developed by the German mathematician Georg Cantor (1845-1918).
(He worked on certain kinds of infinite series particularly on Fourier series

Origin of Set Theory

(The basic ideas of set theory were developed by the German mathematician Georg Cantor (1845-1918).
© He worked on certain kinds of infinite series particularly on Fourier series
(Most mathematicians accept set theory as a basis of modern mathematical analysis

Origin of Set Theory

(The basic ideas of set theory were developed by the German mathematician Georg Cantor (1845-1918).
(He worked on certain kinds of infinite series particularly on Fourier series
(Most mathematicians accept set theory as a basis of modern mathematical analysis
© Cantor's work was fundamental to the later investigation of Mathematical logic.

Definitions

Definitions

Set

A set is a collection of well-defined objects. The objects of a set are called elements or members of the set.

Definitions

Set

A set is a collection of well-defined objects. The objects of a set are called elements or members of the set.

The main property of a set in mathematics is that it is well-defined.

Definitions

Set

A set is a collection of well-defined objects. The objects of a set are called elements or members of the set.

The main property of a set in mathematics is that it is well-defined. This means that given any object, it must be clear whether that object is a member (element) of the set or not.

Definitions

Set

A set is a collection of well-defined objects. The objects of a set are called elements or members of the set.

The main property of a set in mathematics is that it is well-defined. This means that given any object, it must be clear whether that object is a member (element) of the set or not. The objects of a set are all distinct, i.e., no two objects are the same.

Definitions

Example

Which of the following collections are well - defined ?

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.
(2) The collection of numbers 2, 4, 6, 10 and 12 .

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.
(2) The collection of numbers $2,4,6,10$ and 12 .
(3) The collection of states in India.

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.
(2) The collection of numbers $2,4,6,10$ and 12 .
(3) The collection of states in India.
(4) The collection of all good movies.

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.
(2) The collection of numbers $2,4,6,10$ and 12 .
(3) The collection of states in India.
(4) The collection of all good movies.
(1), (2) and (3) are well-defined and therefore they are sets.

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.
(2) The collection of numbers $2,4,6,10$ and 12 .
(3) The collection of states in India.
(4) The collection of all good movies.
(1), (2) and (3) are well-defined and therefore they are sets. (4) is not well-defined because the word good is not defined.

Definitions

Example

Which of the following collections are well - defined ?
(1) The collection of male students in our class.
(2) The collection of numbers $2,4,6,10$ and 12 .
(3) The collection of states in India.
(4) The collection of all good movies.
(1), (2) and (3) are well-defined and therefore they are sets. (4) is not well-defined because the word good is not defined. Therefore, (4) is not a set.

Definitions

Cardinal Number

the number of elements in a set is called the cardinal number of the set.

Definitions

Cardinal Number

the number of elements in a set is called the cardinal number of the set. The cardinal number of the set A is denoted by $n(A)$.

Definitions

Cardinal Number

the number of elements in a set is called the cardinal number of the set. The cardinal number of the set A is denoted by $n(A)$.

Example

Consider the set $A=\{-1,0,1,2,3,4,5\}$.

Definitions

Cardinal Number

the number of elements in a set is called the cardinal number of the set. The cardinal number of the set A is denoted by $n(A)$.

Example

Consider the set $A=\{-1,0,1,2,3,4,5\}$. The set A has 7 elements.

Definitions

Cardinal Number

the number of elements in a set is called the cardinal number of the set. The cardinal number of the set A is denoted by $n(A)$.

Example

Consider the set $A=\{-1,0,1,2,3,4,5\}$. The set A has 7 elements. \therefore The cardinal number of A is 7 . i.e., $n(A)=7$.

Definitions

Empty Set

A set containing no elements is called the empty set or null set or void set.

Definitions

Empty Set

A set containing no elements is called the empty set or null set or void set.

Example

Consider the set $A=\{x: x<1, x \in \mathbb{N}\}$.

Definitions

Empty Set

A set containing no elements is called the empty set or null set or void set.

Example

Consider the set $A=\{x: x<1, x \in \mathbb{N}\}$. There are no natural numbers which are less than 1 .

Definitions

Finite Set
 If the number of elements in a set is zero or finite, then the set is called a finite set.

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

88 Consider the set A of natural numbers between 8 and 9.

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

8. Consider the set A of natural numbers between 8 and 9. There is no natural numbers between 8 and 9 .

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

8: Consider the set A of natural numbers between 8 and 9. There is no natural numbers between 8 and 9 . $A=\{ \}$ and $n(A)=0$.

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

8\% Consider the set A of natural numbers between 8 and 9. There is no natural numbers between 8 and 9 . $A=\{ \}$ and $n(A)=0 . \therefore A$ is finite set.

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

8: Consider the set A of natural numbers between 8 and 9. There is no natural numbers between 8 and 9 . $A=\{ \}$ and $n(A)=0 . \therefore A$ is finite set.
8. Consider the set $X=\{x: x$ is an integer and $-1 \leq x \leq 2\}$.

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

8) Consider the set A of natural numbers between 8 and 9. There is no natural numbers between 8 and 9 . $A=\{ \}$ and $n(A)=0 . \therefore A$ is finite set.
8. Consider the set $X=\{x: x$ is an integer and $-1 \leq x \leq 2\} . X=\{-1,0,1,2\}$ and $n(X)=4$.

Definitions

Finite Set

If the number of elements in a set is zero or finite, then the set is called a finite set.

Example

88 Consider the set A of natural numbers between 8 and 9. There is no natural numbers between 8 and 9 . $A=\{ \}$ and $n(A)=0 . \therefore A$ is finite set.
8. Consider the set $X=\{x: x$ is an integer and $-1 \leq x \leq 2\}$. $X=\{-1,0,1,2\}$ and $n(X)=4 . \therefore X$ is a finite set.

Definitions

Infinite Set

A set is said to be an infinite set if the number of elements in the set is not finite.

Definitions

Infinite Set

A set is said to be an infinite set if the number of elements in the set is not finite.

Example

Let $\mathbb{W}=$ The set of all whole numbers,

Definitions

Infinite Set

A set is said to be an infinite set if the number of elements in the set is not finite.

Example

Let $\mathbb{W}=$ The set of all whole numbers, i.e.,
$\mathbb{W}=\{0,1,2,3, \ldots\}$.

Definitions

Infinite Set

A set is said to be an infinite set if the number of elements in the set is not finite.

Example

Let $\mathbb{W}=$ The set of all whole numbers, i.e.,
$\mathbb{W}=\{0,1,2,3, \ldots\}$. The set of whole numbers contain infinite number of elements.

Definitions

Infinite Set

A set is said to be an infinite set if the number of elements in the set is not finite.

Example

Let $\mathbb{W}=$ The set of all whole numbers, i.e.,
$\mathbb{W}=\{0,1,2,3, \ldots\}$. The set of whole numbers contain infinite number of elements. $\therefore \mathbb{W}$ is an infinite set.

Definitions

Singleton Set

a set containing only one element is called a singleton set

Definitions

Singleton Set

a set containing only one element is called a singleton set

Example

Consider the set $A=\{x: x$ is an integer and $1<x<3\}$.

Definitions

Singleton Set

a set containing only one element is called a singleton set

Example

Consider the set $A=\{x: x$ is an integer and $1<x<3\}$. $A=\{2\}$. i.e., A has only one element.

Definitions

Singleton Set

a set containing only one element is called a singleton set

Example

Consider the set $A=\{x: x$ is an integer and $1<x<3\}$. $A=\{2\}$. i.e., A has only one element. $\therefore A$ is a singleton set.

Definitions

Equivalent Set

two sets A and B are said to be equivalent if they have the same number of elements.

Definitions

Equivalent Set

two sets A and B are said to be equivalent if they have the same number of elements. In other words, A and B are equivalent if $n(A)=n(B)$.

Definitions

Equivalent Set

 two sets A and B are said to be equivalent if they have the same number of elements. In other words, A and B are equivalent if $n(A)=n(B)$.
Example

Consider the sets $A=\{7,8,9,10\}$

Definitions

Equivalent Set

 two sets A and B are said to be equivalent if they have the same number of elements. In other words, A and B are equivalent if $n(A)=n(B)$.
Example

Consider the sets $A=\{7,8,9,10\}$ and $B=\{3,5,6,11\}$.

Definitions

Equivalent Set

two sets A and B are said to be equivalent if they have the same number of elements. In other words, A and B are equivalent if $n(A)=n(B)$.

Example

Consider the sets $A=\{7,8,9,10\}$ and $B=\{3,5,6,11\}$. Here, $n(A)=4$ and $n(B)=4$.

Definitions

Equivalent Set

two sets A and B are said to be equivalent if they have the same number of elements. In other words, A and B are equivalent if $n(A)=n(B)$.

Example

Consider the sets $A=\{7,8,9,10\}$ and $B=\{3,5,6,11\}$. Here, $n(A)=4$ and $n(B)=4 . \therefore A \equiv B$.

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order.

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order. Otherwise the sets are said to be unequal.

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order. Otherwise the sets are said to be unequal. In other words, two sets A and B, are said to be equal if

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order. Otherwise the sets are said to be unequal. In other words, two sets A and B, are said to be equal if
(1) every element of A is also an element of B and

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order. Otherwise the sets are said to be unequal. In other words, two sets A and B, are said to be equal if
(1) every element of A is also an element of B and
(2) every element of B is also an element of A.

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order.
Otherwise the sets are said to be unequal. In other words, two sets A and B, are said to be equal if
(1) every element of A is also an element of B and
(2) every element of B is also an element of A.

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{d, b, a, c\}$.

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order.
Otherwise the sets are said to be unequal. In other words, two sets A and B, are said to be equal if
(1) every element of A is also an element of B and
(2) every element of B is also an element of A.

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{d, b, a, c\}$. Set A and B contain exactly the same elements.

Definitions

Equal Set

Two sets A and B are said to be equal if they contain exactly the same elements, regardless of order.
Otherwise the sets are said to be unequal. In other words, two sets A and B, are said to be equal if
(1) every element of A is also an element of B and
(2) every element of B is also an element of A.

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{d, b, a, c\}$. Set A and B contain exactly the same elements.
$\therefore A=B$.

Definitions

Subset

A set A is a subset of set B if every element of A is also an element of B.

Definitions

Subset

A set A is a subset of set B if every element of A is also an element of B. In symbol we write $A \subseteq B$

Definitions

Subset

A set A is a subset of set B if every element of A is also an element of B. In symbol we write $A \subseteq B$

四' Read $A \subseteq B$ as ' A is a subset of B ' or ' A is contained in B^{\prime}

Definitions

Subset

A set A is a subset of set B if every element of A is also an element of B ．In symbol we write $A \subseteq B$

因＇Read $A \subseteq B$ as＇A is a subset of B＇or＇A is contained in B^{\prime}
म⿴囗大ㅜㅇ Read $A \nsubseteq B$ as＇A is not a subset of B＇or＇A is not contained in B^{\prime}

Definitions

Example

Consider the sets $A=\{7,8,9\}$ and $B=\{7,8,9,10\}$.

Definitions

Example

Consider the sets $A=\{7,8,9\}$ and $B=\{7,8,9,10\}$. We see that every element of A is also an element of B.

Definitions

Example

Consider the sets $A=\{7,8,9\}$ and $B=\{7,8,9,10\}$. We see that every element of A is also an element of B.
$\therefore A$ is a subset of B. i.e., $A \subseteq B$.

Definitions

Proper Subset

A set A is said to be a proper subset of set B if $A \subseteq B$ and $A \neq B$.

Definitions

Proper Subset

A set A is said to be a proper subset of set B if $A \subseteq B$ and $A \neq B$. In symbol we write $A \subset B$.

Definitions

Proper Subset

A set A is said to be a proper subset of set B if $A \subseteq B$ and $A \neq B$. In symbol we write $A \subset B$. B is called super set of A.

Definitions

Proper Subset

A set A is said to be a proper subset of set B if $A \subseteq B$ and $A \neq B$. In symbol we write $A \subset B$. B is called super set of A.

Example

Consider the sets $A=\{5,7,8\}$ and $B=\{5,6,7,8\}$.

Definitions

Proper Subset

A set A is said to be a proper subset of set B if $A \subseteq B$ and $A \neq B$. In symbol we write $A \subset B$. B is called super set of A.

Example

Consider the sets $A=\{5,7,8\}$ and $B=\{5,6,7,8\}$. Every element of A is also an element of B and $A \neq B$.

Definitions

Proper Subset

A set A is said to be a proper subset of set B if $A \subseteq B$ and $A \neq B$. In symbol we write $A \subset B$. B is called super set of A.

Example

Consider the sets $A=\{5,7,8\}$ and $B=\{5,6,7,8\}$. Every element of A is also an element of B and $A \neq B$. $\therefore A$ is a proper subset of B.

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A.

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A. The power set of a set A is denoted by $\rho(A)$.

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A. The power set of a set A is denoted by $\rho(A)$.

米 The number of subsets of a set with m elements is 2^{m}

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A. The power set of a set A is denoted by $\rho(A)$.

米 The number of subsets of a set with m elements is 2^{m} The number of proper subsets of a set with m elements is $2^{m}-1$

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A. The power set of a set A is denoted by $\rho(A)$.

米 The number of subsets of a set with m elements is 2^{m}

* The number of proper subsets of a set with m elements is $2^{m}-1$

Example

Let $A=\{-3,4\}$.

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A. The power set of a set A is denoted by $\rho(A)$.

米 The number of subsets of a set with m elements is 2^{m}

* The number of proper subsets of a set with m elements is $2^{m}-1$

Example

Let $A=\{-3,4\}$. The subsets of A are
$\phi,\{-3\},\{4\},\{-3,4\}$.

Definitions

Power Set

The set of all subsets of A is said to be the power set of the set A. The power set of a set A is denoted by $\rho(A)$.

米 The number of subsets of a set with m elements is 2^{m}

* The number of proper subsets of a set with m elements is $2^{m}-1$

Example

Let $A=\{-3,4\}$. The subsets of A are
$\phi,\{-3\},\{4\},\{-3,4\}$. Then the power set of A is
$\rho(A)=\{\phi,\{-3\},\{4\},\{-3,4\}\}$

Definitions

Universal Set

The set that contains all the elements under consideration in a given discussion is called the universal set.

Definitions

Universal Set

The set that contains all the elements under consideration in a given discussion is called the universal set. The universal set is denoted by U.

Definitions

Universal Set

The set that contains all the elements under consideration in a given discussion is called the universal set. The universal set is denoted by U.

Example

If the elements currently under discussion are integers,

Definitions

Universal Set

The set that contains all the elements under consideration in a given discussion is called the universal set. The universal set is denoted by U.

Example

If the elements currently under discussion are integers, then the universal set U is the set of all integers.

Definitions

Universal Set

The set that contains all the elements under
consideration in a given discussion is called the universal set. The universal set is denoted by U.

Example

If the elements currently under discussion are integers, then the universal set U is the set of all integers. i.e., $U=\{x: x \in \mathbb{Z}\}$.

Definitions

Complement Set

The set of all elements of U (universal set) that are not elements of $A \subseteq U$ is called the complement of A.

Definitions

Complement Set

The set of all elements of U (universal set) that are not elements of $A \subseteq U$ is called the complement of A. The complement of A is denoted by A^{\prime} or A^{c}.

Definitions

Complement Set

The set of all elements of U (universal set) that are not elements of $A \subseteq U$ is called the complement of A. The complement of A is denoted by A^{\prime} or A^{c}.

Example

Let $U=\{a, b, c, d, e, f, g, h\}$ and $A=\{b, d, g, h\}$.

Definitions

Complement Set

The set of all elements of U (universal set) that are not elements of $A \subseteq U$ is called the complement of A. The complement of A is denoted by A^{\prime} or A^{c}.

Example

Let $U=\{a, b, c, d, e, f, g, h\}$ and $A=\{b, d, g, h\}$.
Then $A^{\prime}=\{a, c, e, f\}$

Definitions

Union of Sets

The union of two sets A and B is the set of elements which are in A or in B or in both A and B.

Definitions

Union of Sets

The union of two sets A and B is the set of elements which are in A or in B or in both A and B. We write the union of sets A and B as $A \cup B$.

Definitions

Union of Sets

The union of two sets A and B is the set of elements which are in A or in B or in both A and B. We write the union of sets A and B as $A \cup B$.

$$
\text { In symbol, } A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Definitions

Union of Sets

The union of two sets A and B is the set of elements which are in A or in B or in both A and B. We write the union of sets A and B as $A \cup B$.

$$
\text { In symbol, } A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Example

Let $A=\{11,12,13,14\}$ and $B=\{9,10,12,14,15\}$.

Definitions

Union of Sets

The union of two sets A and B is the set of elements which are in A or in B or in both A and B. We write the union of sets A and B as $A \cup B$.

$$
\text { In symbol, } A \cup B=\{x: x \in A \text { or } x \in B\}
$$

Example

Let $A=\{11,12,13,14\}$ and $B=\{9,10,12,14,15\}$.
Then $A \cup B=\{9,10,11,12,13,14,15\}$.

Definitions

Intersection of Sets

The intersection of two sets A and B is the set of all elements common to both A and B.

Definitions

Intersection of Sets

The intersection of two sets A and B is the set of all elements common to both A and B. We write the interesction of sets A and B as $A \cap B$.

Definitions

Intersection of Sets

The intersection of two sets A and B is the set of all elements common to both A and B. We write the interesction of sets A and B as $A \cap B$.

$$
\text { In symbol, } A \cap B=\{x: x \in A \text { and } x \in B\}
$$

Definitions

Intersection of Sets

The intersection of two sets A and B is the set of all elements common to both A and B. We write the interesction of sets A and B as $A \cap B$.

$$
\text { In symbol, } A \cap B=\{x: x \in A \text { and } x \in B\}
$$

Example

Let $A=\{11,12,13,14\}$ and $B=\{9,10,12,14,15\}$.

Definitions

Intersection of Sets

The intersection of two sets A and B is the set of all elements common to both A and B. We write the interesction of sets A and B as $A \cap B$.

$$
\text { In symbol, } A \cap B=\{x: x \in A \text { and } x \in B\}
$$

Example

Let $A=\{11,12,13,14\}$ and $B=\{9,10,12,14,15\}$.
Then $A \cap B=\{12,14\}$.

Definitions

Disjoint Sets

Two sets A and B are said to be disjoint if there is no element common to both A and B.

Definitions

Disjoint Sets

Two sets A and B are said to be disjoint if there is no element common to both A and B. In other words, if A and B are disjoint sets, then

Definitions

Disjoint Sets

Two sets A and B are said to be disjoint if there is no element common to both A and B. In other words, if A and B are disjoint sets, then $A \cap B=\emptyset$.

Definitions

Disjoint Sets

Two sets A and B are said to be disjoint if there is no element common to both A and B. In other words, if A and B are disjoint sets, then $A \cap B=\emptyset$.

Example

Consider the sets $A=\{5,6,7,8\}$ and $B=\{11,12,13\}$.

Definitions

Disjoint Sets

Two sets A and B are said to be disjoint if there is no element common to both A and B. In other words, if A and B are disjoint sets, then $A \cap B=\emptyset$.

Example

Consider the sets $A=\{5,6,7,8\}$ and $B=\{11,12,13\}$.
We have $A \cap B=\phi$.

Definitions

Disjoint Sets

Two sets A and B are said to be disjoint if there is no element common to both A and B. In other words, if A and B are disjoint sets, then $A \cap B=\emptyset$.

Example

Consider the sets $A=\{5,6,7,8\}$ and $B=\{11,12,13\}$. We have $A \cap B=\phi$. So A and B are disjoint sets.

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B.

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

In symbol, $A-B=\{x: x \in A$ and $x \notin B\}$

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

In symbol, $A-B=\{x: x \in A$ and $x \notin B\}$
Similarly, $B-A=\{x: x \in B$ and $x \notin A\}$

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

In symbol, $A-B=\{x: x \in A$ and $x \notin B\}$
Similarly, $B-A=\{x: x \in B$ and $x \notin A\}$

Example

Consider the set $A=\{2,3,5,7,11\}$ and $B=\{5,7,9,11,13\}$.

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

* In symbol, $A-B=\{x: x \in A$ and $x \notin B\}$

Similarly, $B-A=\{x: x \in B$ and $x \notin A\}$

Example

Consider the set $A=\{2,3,5,7,11\}$ and $B=\{5,7,9,11,13\}$. To find $A-B$,

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

* In symbol, $A-B=\{x: x \in A$ and $x \notin B\}$
* Similarly, $B-A=\{x: x \in B$ and $x \notin A\}$

Example

Consider the set $A=\{2,3,5,7,11\}$ and $B=\{5,7,9,11,13\}$. To find $A-B$, we remove the elements of B from A.

Definitions

Difference of two Sets

The difference of the two sets A and B is the set of all elements belonging to A but not to B. The difference of the two sets is denoted by $A-B$

* In symbol, $A-B=\{x: x \in A$ and $x \notin B\}$
* Similarly, $B-A=\{x: x \in B$ and $x \notin A\}$

Example

Consider the set $A=\{2,3,5,7,11\}$ and $B=\{5,7,9,11,13\}$. To find $A-B$, we remove the elements of B from $A . \therefore A-B=\{2,3\}$.

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences and is denoted by $A \Delta B$.

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences and is denoted by $A \Delta B$.

$$
\text { Thus, } A \Delta B=(A-B) \cup(B-A)
$$

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences and is denoted by $A \Delta B$.

$$
\text { Thus, } A \Delta B=(A-B) \cup(B-A)
$$

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{b, d, e, f\}$.

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences and is denoted by $A \Delta B$.

$$
\text { Thus, } A \Delta B=(A-B) \cup(B-A)
$$

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{b, d, e, f\}$. We have, $A-B=\{a, c\}$

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences and is denoted by $A \Delta B$.

$$
\text { Thus, } A \Delta B=(A-B) \cup(B-A)
$$

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{b, d, e, f\}$. We have, $A-B=\{a, c\}$ and $B-A=\{e, f\}$.

Definitions

Symmetric Difference

The symmetric difference of two sets A and B is the union of their differences and is denoted by $A \Delta B$.

$$
\text { Thus, } A \Delta B=(A-B) \cup(B-A)
$$

Example

Consider the sets $A=\{a, b, c, d\}$ and $B=\{b, d, e, f\}$.
We have, $A-B=\{a, c\}$ and $B-A=\{e, f\}$.
$\therefore A \Delta B=\{(A-B) \cup(B-A)=\{a, c, e, f\}$.

Definitions

For any two finite sets A and B, we have $n(A)=n(A-B)+n(A \cap B)$

Definitions

For any two finite sets A and B, we have

 $\mathfrak{E} n(A)=n(A-B)+n(A \cap B)$$\mathfrak{R} n(B)=n(B-A)+n(A \cap B)$

Definitions

For any two finite sets A and B, we have

 \&\% $n(A)=n(A-B)+n(A \cap B)$\& $n(B)=n(B-A)+n(A \cap B)$
\&่ $n(A \cup B)=n(A-B)+n(A \cap B)+n(B-A)$

Definitions

For any two finite sets A and B, we have

\& $n(A)=n(A-B)+n(A \cap B)$
\& $n(B)=n(B-A)+n(A \cap B)$
\& $n(A \cup B)=n(A-B)+n(A \cap B)+n(B-A)$
\& $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

Definitions

For any two finite sets A and B, we have

$n(A)=n(A-B)+n(A \cap B)$
$\mathfrak{E} n(B)=n(B-A)+n(A \cap B)$
\&

$$
\begin{aligned}
\&(A \cup B) & =n(A-B)+n(A \cap B)+n(B-A) \\
\&(A \cup B) & =n(A)+n(B)-n(A \cap B) \\
& n(A \cup B)=n(A)+n(B) \text { if } A \cap B=\emptyset .
\end{aligned}
$$

Problems

Problems

Question 1

In a class of 120 students numbered 1 to 120 ,

Problems

Question 1

In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics,

Problems

Question 1

In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry

Problems

Question 1

In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math.

Problems

Question 1

In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects ?

Problems

Question 1

In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects?

Answer Key

(a) 19
(b) 41
(c) 21
(d) 57

Problems

Question 1

In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects ?

Answer Key

(a) 19
(b) 41
(c) 21
(d) 57

Answer is

The correct choice is (b) 41

Problems

Explanation
 $$
\begin{aligned} & n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\ & n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \end{aligned}
$$

Problems

Explanation
 $$
\begin{aligned} & n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\ & n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\ & n(A)=60, n(B)=24, n(C)=17 \end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=60, n(B)=24, n(C)=17 \\
& n(A \cap B)=12, n(B \cap C)=3, n(C \cap A)=8,
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=60, n(B)=24, n(C)=17 \\
& n(A \cap B)=12, n(B \cap C)=3, n(C \cap A)=8, \\
& n(A \cap B \cap C)=1
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=60, n(B)=24, n(C)=17 \\
& n(A \cap B)=12, n(B \cap C)=3, n(C \cap A)=8, \\
& n(A \cap B \cap C)=1
\end{aligned}
$$

Diagram

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=60, n(B)=24, n(C)=17 \\
& n(A \cap B)=12, n(B \cap C)=3, n(C \cap A)=8, \\
& n(A \cap B \cap C)=1
\end{aligned}
$$

Diagram

Answer is

$$
\begin{aligned}
& n(A \cup B \cup C)=60+24+ \\
& 17-(12+8+3)+1=79
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=60, n(B)=24, n(C)=17 \\
& n(A \cap B)=12, n(B \cap C)=3, n(C \cap A)=8, \\
& n(A \cap B \cap C)=1
\end{aligned}
$$

Diagram

Answer is

$n(A \cup B \cup C)=60+24+$ $17-(12+8+3)+1=79$
So, $120-79=41$.

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center,

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler,

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone.

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card,

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both a two wheeler and mobile phone

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both a two wheeler and mobile phone and 10 had all three.

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both a two wheeler and mobile phone and 10 had all three. How many candidates had none of the three?

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both a two wheeler and mobile phone and 10 had all three. How many candidates had none of the three?

Answer Key

(a) 0
(b) 20
(c) 10
(d) 18
(e) 25

Problems

Question 2

Of the 200 candidates who were interviewed for a position at a call center, 100 had a two-wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two-wheeler and a credit card, 30 had both, a credit card and a mobile phone and 60 had both a two wheeler and mobile phone and 10 had all three. How many candidates had none of the three?

Answer Key

(a) 0
(b) 20
(c) 10
(d) 18

Answer is

The correct choice is (c) 10
(e) 25

Problems

Explanation
 $$
\begin{aligned} & n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\ & n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \end{aligned}
$$

Problems

Explanation
 $$
\begin{aligned} & n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\ & n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\ & n(A)=100, n(B)=70, n(C)=140 \end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=100, n(B)=70, n(C)=140 \\
& n(A \cap B)=40, n(B \cap C)=30, n(C \cap A)=60,
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=100, n(B)=70, n(C)=140 \\
& n(A \cap B)=40, n(B \cap C)=30, n(C \cap A)=60, \\
& n(A \cap B \cap C)=10
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=100, n(B)=70, n(C)=140 \\
& n(A \cap B)=40, n(B \cap C)=30, n(C \cap A)=60, \\
& n(A \cap B \cap C)=10
\end{aligned}
$$

Diagram

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=100, n(B)=70, n(C)=140 \\
& n(A \cap B)=40, n(B \cap C)=30, n(C \cap A)=60, \\
& n(A \cap B \cap C)=10
\end{aligned}
$$

Diagram

Answer is

$n(A \cup B \cup C)=$ $100+70+140-(40+$ $30+60)+10=190$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-(n(A \cap B)+ \\
& n(B \cap C)+n(C \cap A))+n(A \cap B \cap C) \\
& n(A)=100, n(B)=70, n(C)=140 \\
& n(A \cap B)=40, n(B \cap C)=30, n(C \cap A)=60, \\
& n(A \cap B \cap C)=10
\end{aligned}
$$

Diagram

Answer is

$n(A \cup B \cup C)=$ $100+70+140-(40+$ $30+60)+10=190$
So. $200-190=10$.

Problems

Question 3

In a class of 40 students, 12 enrolled for both English and German.

Problems

Question 3

In a class of 40 students, 12 enrolled for both English and German. 22 enrolled for German.

Problems

Question 3

In a class of 40 students, 12 enrolled for both English and German. 22 enrolled for German. If the students of the class enrolled for at least one of the two subjects,

Problems

Question 3

In a class of 40 students, 12 enrolled for both English and German. 22 enrolled for German. If the students of the class enrolled for at least one of the two subjects, then how many students enrolled for only English and not German ?

Problems

Question 3

In a class of 40 students, 12 enrolled for both English and German. 22 enrolled for German. If the students of the class enrolled for at least one of the two subjects, then how many students enrolled for only English and not German ?

Answer Key

(a) 30
(b) 10
(c) 18
(d) 28
(e) 32

Problems

Question 3

In a class of 40 students, 12 enrolled for both English and German. 22 enrolled for German. If the students of the class enrolled for at least one of the two subjects, then how many students enrolled for only English and not German ?

Answer Key

(a) 30
(b) 10
(c) 18
(d) 28
(e) 32

Problems

Explanation
 $$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

Problems

> Explanation $n(A \cup B)=n(A)+n(B)-n(A \cap B)$ $n(A)=? ?, n(B)=22$

Problems

$$
\begin{aligned}
& \text { Explanation } \\
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=? ?, n(B)=22 \\
& n(A \cap B)=12
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=? ?, n(B)=22 \\
& n(A \cap B)=12
\end{aligned}
$$

Diagram

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=? ?, n(B)=22 \\
& n(A \cap B)=12
\end{aligned}
$$

Diagram

Answer is

$$
\begin{aligned}
& 40=A+22-12 \Rightarrow \\
& A=30
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=? ?, n(B)=22 \\
& n(A \cap B)=12
\end{aligned}
$$

Diagram

Answer is

$$
\begin{aligned}
& 40=A+22-12 \Rightarrow \\
& A=30
\end{aligned}
$$

So, English only is $30-12=$ 18

Problems

Question 4

In a class 40% of the students enrolled for Math

Problems

Question 4

In a class 40\% of the students enrolled for Math and 70\% enrolled for Economics.

Problems

Question 4

In a class 40\% of the students enrolled for Math and 70\% enrolled for Economics. If 15% of the students enrolled for both Math and Economics,

Problems

Question 4

In a class 40\% of the students enrolled for Math and 70\% enrolled for Economics. If 15% of the students enrolled for both Math and Economics, what \% of the students of the class did not enroll for either of the two subjects ?

Problems

Question 4

In a class 40% of the students enrolled for Math and 70\% enrolled for Economics. If 15% of the students enrolled for both Math and Economics, what \% of the students of the class did not enroll for either of the two subjects ?

Answer Key

(a) 5%
(b) 15%
(c) 0%
(d) 25%
(e) None of these

Problems

Question 4

In a class 40\% of the students enrolled for Math and 70\% enrolled for Economics. If 15% of the students enrolled for both Math and Economics, what \% of the students of the class did not enroll for either of the two subjects ?

Answer Key

(a) 5%
(b) 15%
(c) 0%
(d) 25%

Answer is

The correct choice is
(a) 5%
(e) None of these

Problems

Explanation
 $$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=40, n(B)=70
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=40, n(B)=70 \\
& n(A \cap B)=15
\end{aligned}
$$

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=40, n(B)=70 \\
& n(A \cap B)=15
\end{aligned}
$$

Diagram

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=40, n(B)=70 \\
& n(A \cap B)=15
\end{aligned}
$$

Diagram

Answer is

$A \cup B=40+70-15 \Rightarrow$
$A \cup B=95$ i.e., 95%
students enrolled for both.

Problems

Explanation

$$
\begin{aligned}
& n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
& n(A)=40, n(B)=70 \\
& n(A \cap B)=15
\end{aligned}
$$

Diagram

Answer is

$A \cup B=40+70-15 \Rightarrow$
$A \cup B=95$ i.e., 95% students enrolled for both. So, 5\% students not enrolled for both.

© Interaction

